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The proximate mechanisms behind fear: 
an IBM approach to understanding behavioral changes in 
songbirds and the subsequent evolutionary trajectory

Hanif Kawousi, Sergey Budaev and Jarl Giske

models have been developed in an effort to describe these 
theories. In the pursuit of modeling behavioral ecology, in-
spiration was drawn from other disciplines such as phys-
ics, and its presumed simplifications of natural phenome-
na, and economics, with its concepts of costs and benefits. 
Both, as described below, valuable concepts regarding op-
timization methods in behavioral ecology.

The primary issue with a mathematical approach was 
the simplification needed to explain evolution. This need 
for simplification was addressed by Alfred Lotka in 1925. 
Lotka was the first to model evolutionary adaptation and 
behavior, by turning Euler’s population growth equation 
(1767) into an equation for fitness, now known as the Eu-
ler-Lotka equation (Lotka, 1925). Here, Lotka willingly 
simplified nature by combining the anatomy, behavior, and 
life history of an organism into a common currency, de-
scribing all that either adds to or diminishes an individual’s 
reproductive rate (r) during a lifetime. Due to the lack of 
computational technology at the time, these calculations 
were intentionally made to reach a point of optimal behav-
ior in animals, stripped of realities’ imperfect nature and 
complexity. In this way, numbers could be easily produced 
and used in the early models.

The implementation of optimization methods, to fore-
cast how organisms would optimally respond to environ-
mental factors (Fisher, 1930; Lotka, 1925), was therefore 
both willingly and knowingly done without accounting 
for the constraints usually present in nature. Still, as those 
who model nature must keep in mind, these constraints 
are highly present in the lives of real-life organisms: Im-
perfect information, lack of analytical skills, limited fore-
sight, physiological and cognitive limitations, etc. Con-
sequently, while modeled organisms may use all relevant 
environmental and physiological information to assess and 
determine the behavior that would contribute the most to 

Abstract 
In this article, we present an individual-based model 
(IBM) investigating the proximate mechanisms behind 
phenotypes “boldness” and “fearfulness” in songbirds. Two 
selection pressures, “hunger” and “predator-induced risk”, 
are reflected in the genotype of the model’s digital song-
birds. In our model, these two emotions work as opposites: 
when the songbirds are hungry passed a certain point, they 
are not afraid of predation and vice versa. Ergo, the genes 
dictate the hard limits for the phenotypic variations possi-
ble. Other limitations, such as bird mass and environmen-
tal factors, affect them as well. By running the model code 
through many generations of a population of songbirds, 
we investigated how these phenotypes evolved despite lim-
itations, and which one(s) would become predominant in 
our population. Our results show rapid evolution, despite 
the limitations of bird mass set by the algorithm. The phe-
notype expressed as “moderate amount of fear” became 
predominant before ten generations had passed. For the 
future, we propose further development of the model, as 
it is quite simplistic. Still, we believe this can add to the 
explanation of proximate mechanisms behind phenotypes, 
as well as satisfy the demands of ethical practice regarding 
animal welfare in science. 

Introduction
Since the publication of The Origin of Species (Darwin, 
1859), the study of animal behavior has revolved around 
the idea that behavior has evolved through adaptation. 
For nearly a century, quantitative evolutionary ecologists 
have simplified the inquiry into adaptive behavior by fo-
cusing on the concept of optimal behavior (Fawcett et al., 
2013; Lotka, 1925). Darwin’s theories were presented in the 
form of the English language and not numerically through 
mathematics. Therefore, in the past century, mathematical 
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fitness, real organisms must contend with many inherent 
limitations, the above-mentioned included.

More than half a decade later, Allen Grafen built upon 
William D. Hamilton’s influential work (Hamilton, 1964a, 
1964b, 1970) and proposed the concept of the “phenotyp-
ic gambit” (Grafen, 1984). A “Gambit” is a term originat-
ing from the game of chess, representing the sacrifice of a 
smaller component for an advantageous, larger gain. The 
phenotypic gambit is in this way designed to “sacrifice” 
the proximate mechanisms (i.e., genes) for the advantage 
of not having to do genetics when exploring phenotypes. 
Despite the continuing increase in computational power 
available to behavioral ecologists, the simplification does 
little, if anything, to reveal the mechanisms behind the 
phenotypes examined.

This presents us with a paradox within evolutionary 
ecology. Behavioral ecologists have dedicated substantial 
efforts to devising complex theories and models that iden-
tify the behavioral strategies anticipated to optimize life-
time fitness under certain constraints. Contrary, the field of 
evolutionary ecology remains largely unexplored in terms 
of shedding light on the proximate mechanisms behind de-
cision-making processes or the specific implementation of 
fitness maximization within the nervous system (Budaev 
et al., 2019; Fawcett et al., 2013). The paradox is enforced 
by the fact that, unlike the assumptions of early models of 
animal behavior, all nature’s solutions have been restricted 
by proximate mechanisms, i.e., genetic limitations to phe-
notypic expressions (Andersen, 2014).

The model presented in this article also provides addi-
tional push-back against the phenotypic gambit by show-
ing that a single gene can be expressed through a range of 
phenotypic expressions, meaning plasticity. Phenotypic 
plasticity is how a gene “comes to show”: a manifestation 
formed not only by its genetic architecture but also by the 
environment surrounding it (Scheiner, 1993; Via & Lande, 
1985). In our model, the songbird is given a single gene. 
However as shown in the Results section, this single gene 
can provide a range of phenotypes. Even if they are genet-
ically limited, these results help to solve the above-men-
tioned paradox. Where the phenotypic gambit intends for 
the proximate mechanisms to be sacrificed in pursuit of 
showing fitness by phenotypes, we provide results indicat-
ing otherwise.

Modeling Songbirds

In nature, it is shown that the sound of predators alone 
is sufficient to make songbirds produce fewer offspring 
(Allen et al., 2022). In their paper, Allen and co-authors 
showed that through intermittent broadcasting of preda-
tor sounds, the fear produced in songbirds were sufficient 
to cut the population in half after five generations. While 

the ultimate explanation based on phenotype in their pa-
per is clear, it is not clear how the genetic constraints nor 
the phenotypic plasticity affected survival. Why did some 
songbirds make better choices than others? What was the 
genetic basis of this advantageous phenotype? Why aren’t 
all the songbirds learning through plasticity and/or heuris-
tics to respond differently to the sounds, when the preda-
tors themselves are not present?

To answer this, we have developed a model that aims to 
investigate the genetic and plastic mechanisms that under-
lie these fearful expressions in the songbirds’ behavior. In 
our model, we assume fear to be an emotion and that the 
emotion is coded for by a single gene. Thereby making a 
large number of genes into something calculable. We can 
therefore by this simplification investigate how the gene re-
sponds to selective pressures given by the environment in 
our simulations. Although this might be considered a gam-
bit as well, by doing so we may investigate the components 
between the gene and fitness such as emotions, plasticity, 
and norm of reactions.

By using an individual-based model (IBM) with the in-
corporation of a genetic algorithm (Grimm, 1999; Grimm 
& Railsback, 2013; Holland, 1992), we suggest a bottom-up 
approach to investigating the proximate mechanisms be-
hind the emotion fear. By assuming fear to be an emotion 
and that the emotion is coded for by a gene, we investi-
gate how the gene responds to selective pressures given by 
the environment in our simulations. IBMs cannot produce 
theories on a systemic level (Grimm, 1999). Still, a para-
digmatic model that refers to theoretical ecology is ideal 
for modeling. By using objects (individuals) and studying 
their interactions as a population, one could study how 
properties such as specific phenotypes emerge.

Through the use of heuristics (Hutchinson & Gigeren-
zer, 2005) our digital birds make decisions based on the 
choices made by their parents. Heuristics can be explained 
as certain rules of thumb, “where the proximate mecha-
nism (the decision-making process) has an architecture 
that allows efficient information use and decision-mak-
ing.” (Eliassen et al., 2016, p. 90). Following certain rules of 
thumb, the songbirds change their behavior by perceiving 
their environment through sensory mechanisms. In our 
case, the songbirds are presented with a trade-off: If they 
do not feed, they will reduce in mass and die of starvation, 
but being too bold in foraging means that they are less safe 
from predation. The songbirds are therefore subjected to 
“choosing” the ideal path, in which a simple form of heu-
ristics is needed. These heuristics may therefore consist 
of building blocks (Hutchinson & Gigerenzer, 2005) that 
exploit learned behavior through the inheritance of genes 
and phenotypes. Ultimately, leading to better and quicker 
decision-making.
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The ethics of biological computer science

The ethical reasons for using modeling and computer sci-
ence in biology should also be mentioned. There are costs 
and benefits when invasive interventions are done to wild-
life in the name of science. As great costs can be disregard-
ed by achieving high-quality answers to important ques-
tions, one must still acknowledge the disturbance that is 
inflicted upon free-living wildlife. According to “The 3Rs 
principles within experimental animal biology” (ASAB 
Ethical Committee/ABS Animal Care Committee, 2023; 
Sneddon et al., 2017), the modeling of such events given 
by Allen and co-authors is suggested to be the more ethi-
cally sustainable choice of research. In the inquiry of how 
fear affects animals in the wild, interventions, such as Allen 
and co-authors (2022) presented as their research method 
caused the death of numerous songbirds. Even though the 
population regained its numbers after the intervention was 
removed, there are still reasons to question the ethics of 
this study’s interventions. Although the subject of animal 
welfare is sometimes criticized as not being scientifically 
objective, remaining agnostic of the subject would be a 
utilitarian approach to animals: the main reasons animals 
are needed are for companionship and farming (Budaev 
et al., 2020). Therefore, we present this model as a contri-
bution to act against this utilitarian view of animals. By 
connecting animal welfare and computational biology, we 
hope to reduce the cost on nature in the name of science.

Material & methods
The architecture of our model is depicted through Figure 
1. For each iteration, aka generation, the digital birds are 
sent into an array consisting of 100 cells along the x-ax-
is. Each cell represents a habitat consisting of two values: 
food availability and risk of predation. These values are 
randomly generated so that each cell/habitat is unique. The 
birds “fly” at random to a cell. The actions of the bird upon 
landing at a specific cell are dictated by both their gene, 
and how their emotional state is at that moment. If they are 
sufficiently afraid, they will not eat. If they are sufficiently 
hungry, they will not be afraid. This can either aid them in 
gaining mass or harm them upon meeting a predator. If 
they are too hungry to mind the risk of themselves being 
killed by the predator, they are at risk of being killed. The 
phenotypic range of their actions is constricted by their 
genetic value, which is randomly sorted throughout the 
population at the beginning of each simulation. Therefore, 
there will be a genetic diversity in place and selection of an 
advantageous gene will be possible.

In our model, we used elements from the theory of the 
global organismic state (GOS) (LeDoux, 2012) in the fol-
lowing ways: If our bird is beyond an emotional threshold 
where it becomes fully fearful, the bird will stay put and 
not fly from cell to cell in search for food. After a while, it 

will grow hungrier, and fear will reduce to a point below 
the threshold. Mathematically, this can be expressed in the 
following way:

Here, k represents the slope defining the temporal as-
pect of the transition between fear and hunger, and b is the 
intersection point of which the birds’ emotional state is at 
a certain point in time. Hmax and Hmin refers to “maximum 
hunger” and “minimum hunger” that the bird experiences. 
T0 is the weight-threshold of the birds and is set to -25% 
of the initial weight of the digital songbird. If a bird’s mass 
drops below this threshold, it is considered dead from star-
vation. Wm on the other hand, gives the value for the birds’ 
maximum mass, which in our model is 25% larger than its 
initial starting weight. We have not considered the weight 
of chicks since we, in our model, assume all birds to be 
adults.

Object-oriented modeling

The model consists of “objects” (figure 1). Each of the ob-
jects are representations of agents in our model, or the en-
vironment the agents act within. The agents are the song-
birds (BIRD) and the predators (PREDATOR). Each of 
the objects have their own characteristics that define what 
qualities the objects possess; where the objects are (i.e., 
which habitat is the bird in), and how the objects’ inter-
actions affect their state. The qualities mentioned are as-
signed values set by parameters in the code. An example is 
the object “BIRD”, which has the real value of “weight”. In 
the code, we set the initial weight to “20.0” (grams), which 
will be the initial value of the birds every time we initialize 
the code. By using an object-oriented model, we can better 
mimic the encounters a bird might have with food and risk 
in nature.

The Genetic Algorithm

In our model, we also created a genetic algorithm (GA) as 
stated by Holland (1992). When each of our objects: “En-
vironment”, “Predator” and “Parent population” (Figure 2), 
are initialized and iterations for each generation are done, 
the GA sorts the songbirds and calculates their fitness”. It 
does so in the way illustrated by the smaller circle in Figure 
2: each parent population undergoes a series of timesteps, 
which gives the order of their actions. After the songbirds’ 
actions are completed, the fitness of the remaining song-
birds is calculated based on their gained mass. Of all the 
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Figure 1. Visualizing the model: the object “BIRD” has attributes weight, state_fear_hunger, is_alive and a counter for when it encounters 
a predator. It has certain actions as well, such as: is_starved and fly. “BIRD” is controlled by “GENE”, which gives it the basis of its pheno-
type. “BIRD” has now a genetically defined personality, and expresses this in “location”, which is the exact point in the “env_cell” (short 
for environment of the cell), which is a part of “whole_environ” (the entire environment consisting of 100 cells, i.e., habitats.). In each cell 
there are also a few instances of “PREDATOR”, which can spawn randomly based on parameter-set probability. Each simulation spawns 
several thousand “BIRD”, which gives us the “POPULATION”.

songbirds, 25% of the fittest are automatically chosen for 
reproduction by the code. To further genetic variation in 
the offspring generation, we have also included an addi-
tional 25% chosen at random from the remaining popula-
tion. Therefore, the next generation in our model will have 
genes from these 50%. This process is shown in Figure 2 as 
“select_reproducing”. After this process of selection based 
on fitness, we submit our new genes to mutation. Accord-
ing to the literature, we chose the parameter for the muta-
tion probability rate to be 4.6 × 10−9 (Smeds et al., 2016). 
The selection with added mutation results in the parent 
populations´ offspring (“offspring_population” in Figure 
2). The offspring will become the main population for the 
next generation, completing our single iteration of the GA.

In our model, we chose 100 iterations of the GA, mean-
ing we ran the simulation for 100 generations of songbirds. 
Since the evolution of a single gene was shown, we believe 
this number of generations should be sufficient. We fully 
acknowledge and stress the fact that this is not reality. It is 
however sufficient to prove that our model works and that 
evolution happens.

Modeling tools

Fortran (Formula Translation)
Fortran is a widely used programming language in the 
natural sciences, including biology. Fortran’s proficiency 
in handling numerical calculations and array operations 
makes it suitable for modeling natural events and data 
analysis. The language provides a broad spectrum of math-
ematical functions and supports advanced operations, en-
abling biologists to develop complex models that can cap-
ture the dynamics of biological systems.

SVN (Subversion)
SVN is a version control system used in software develop-
ment. With SVN, developers can work simultaneously on 
the same code without conflicts, as the system tracks and 
manages the merging of changes. It allows users to check 
out a working copy of the project, make modifications, and 
then commit those changes back to the repository. SVN 
maintains a comprehensive record of all changes, making 
it easy to roll back to previous versions if needed.
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Figure 2. How the model works. For each Initialized simulation our objects (the parent population of birds, the predator and the environ-
ment interact). For the birds that show the greatest fitness (measured only by “best mass”), a selection undergoes mating and creates the 
offspring generation. To incorporate genetic diversity, we also select a certain number of birds that are less fit than optimal and introduce 
mutation of genome in each generation.

Visual Studio and Visual Studio Code
Visual Studio is a widely used integrated development en-
vironment (IDE) created by Microsoft. It provides a com-
prehensive set of tools and features for building a variety of 
software applications, including desktop, web, mobile, and 
cloud-based applications. Visual Studio Code is a versatile 
and lightweight source code editor that offers a wide range 
of features and customization options. Its ease of use, ex-
tensive extension ecosystem, built-in Git integration, de-
bugging support, and productivity-enhancing tools make 
it a popular choice among developers for various program-
ming languages and platforms.

The Code
The code in its entirety can be found and examined at 
GitHub: https://github.com/Kaw-Han/songbird-evo-mod-
el-FORTRAN. The model code can be examined, tested, 
run, and furthered under the restrictions of the assigned 
trademark.

Results & discussion
Our findings indicate that evolution occurs rapidly in our 
model (Figure 3). The phenotypic expression associated 
with the gene in our digital songbirds is characterized by 
moderately cautious behavior during their search for food. 
This suggests that a moderate level of fear serves as a bene-
ficial trait for increasing fitness, measured by the songbirds’ 
gain in mass. Figure 4a further supports this result. The 
population of songbirds experiences a significant decline 
in the first five generations, followed by a subsequent rise 
and stabilization. This pattern indicates the presence of se-
lection, with the gene favored by the environment quickly 
dominating the population. Additionally, the graph in Fig-
ure 4c depicting the average mass of our birds contributes 
to our findings. It shows that the rapid growth observed in 
the first five generations is not sustainable; suggesting that 
the less fearful songbirds, which gained mass due to bold 
behavior, were not favored by the environment. 

This point is further supported by comparing this graph 
to the graph in Figure 4d, which depicts the mass gain of 
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the fittest birds. Unlike the initial increase seen in the first 
five generations, the graph shows a steady, linear growth 
rate. This indicates that the most fit songbirds are those ex-
pressing the phenotype of moderate fear (Figure 3) from the 
beginning of our simulation. Furthermore, the dominance 
of the gene is demonstrated by the standard deviation of 
mass in Figure 4b. As the songbirds adapt their foraging 
strategies through selection, the gain in mass becomes al-
most uniform across the population after five generations.

Another important finding in our model is the expres-
sion of a single gene through multiple phenotypes. When 
designing the digital birds with a single gene, we observed 
variations in the expression of this gene across the popu-
lation. This plasticity, though constrained by the gene, was 
evident in our initial population. As time progressed in our 
model, evolution occurred, and the phenotypic expression 
we referred to as “moderate fear” remained the main phe-
notype. This finding is further supported by both Figures 3 
and 4, which demonstrate that the fittest birds were those ex-
pressing this phenotype from the outset of our simulations.

Through our findings, we present a demonstration of 
how heuristics (Hutchinson & Gigerenzer, 2005) come into 
play. The digital birds in our study exhibited responses to 
predators or hunger based on the information they sensed 
from their environment while operating within the con-
straints imposed by their proximate genetic architecture. 
Notably, we observed variations in the responses of indi-
viduals, suggesting that the rules of thumb guiding their 
behavior may have limitations but are not entirely genet-
ically predetermined. Expanding on this line of thinking, 
we can question how the concept of the phenotypic gambit 
(Grafen, 1984, 1991) explains this phenomenon. Although 
the gene is expressed initially in different ways, the scope of 
the diversity in phenotypes where still genetically limited. 
The phenotypic gambit does not consider that the proxi-
mate mechanisms sometimes constrain the expression of 
adaptive behavior, as pointed out by Fawcett et al. (2013) 
and is therefore sometimes wrong. The numerical findings 
we present add to the arguments against the simplicity of 
the gambit and give us cause to further investigate this phe-
nomenon and continue questioning the benefit of the gam-
bit’s exclusion of genetics.

While our model provides only a partial explanation, 
it offers valuable insights into the findings of Allen et al. 
(2022). In their study, the songbirds exhibited not only a 
significant decline in fitness but also a decrease in pop-
ulation size. It is worth noting that the intervention im-
plemented in their experiment was discontinued after 
five generations. Interestingly, our model demonstrated a 
similar timeframe before the beneficial phenotype became 
dominant. On one hand, the fact that the model mirrored 
real-life events reinforces the validity and utility of the 

models. On the other hand, it underscores the growing 
significance of modeling interventions in nature as initial 
steps toward comprehending population dynamics and the 
effects of factors like predation in novel environments.

It is important to acknowledge the immediate issues 
raised by this thought experiment. Firstly, the ethical im-
plications of prolonging or conducting similar experiments 
as Allen and co-authors (2022) on free-living populations 
would not align with the standards of conduct in biologi-
cal science, as recognized by the ASAB Ethical Committee/
ABS Animal Care Committee (2023). Secondly, adhering 
to animal welfare guidelines prompts further research in-
quiries, such as investigating the impact of invasive urban-
ization on wildlife inhabiting forest areas.

This underscores the growing importance of utilizing 
computational biology to develop models that aid in pre-
dicting likely scenarios. While models heavily rely on data 
obtained from field studies, they offer possibilities to ex-
plore nuances, address knowledge gaps, and even challenge 
established theories without sacrificing lives or causing 
harm to nature. In our model, we could simply design the 
neural capacity of the songbirds, their habitat, their physi-
ological needs, and their psychology. By applying what we 
already know, we can provide information valuable for fu-
ture studies. The need for such an application of our meth-
od, is best expressed by the 3Rs (ASAB Ethical Committee/
ABS Animal Care Committee, 2023; Sneddon et al., 2017): 
Replacement, reduction and refinement. Through models 
and simulations, we can replace real animals with digital 
ones. We are then able to reduce the number of animals 
affected. Finally, we can refine future studies by using pre-
dictive modeling to suggest ideal points of research that 
affects animal life in the future.

Figure 3. The genetic value “9” is evolutionary stable after ap-
proximately five generations. The phenotype expressed by this 
gene value is associated with moderate amounts of fear.
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Figure 4. a) The population declines, but quickly regains its numbers after approximately five generations. b) The standard deviation of mass 
in our population is stabilized after approximately five generations. c) The average mass of all digital songbirds rises significantly through-
out the simulation. d) The average mass of the birds with the highest fitness rises linearly and significantly throughout the simulation.

Expanding the code

We fully acknowledge the simplicity of the model. The fit-
ness of our birds is measured solely by their gain in mass. 
Although this represents successful strategies, more mod-
ules, subroutines, and functions could be interesting to 
include. Alternate strategies for survival and reproduction 
are commonly seen in nature. This would provide an in-
teresting addition to our model. We could introduce more 
genes, more environmental factors such as seasonal chang-
es or migration into the population.

In the times of environmental change, we also suggest 
introducing objects that represent installations placed in 
nature by humans. Windmills are such an object and are 
by many considered as intrusive to nature. Data collected 
from the existing sites containing windmills, can be uti-
lized to create a valuable addition to our model, and subse-
quently to stake-holders on all sides of the matter.

Summary

In this article, we utilized an individual-based model (IBM) 
to investigate the proximate mechanisms underlying the 
response patterns exhibited by songbirds, as studied by Al-
len et al. (2022). While our understanding of the «whole 
picture» remains incomplete, our model offers valuable 
insights into how fear-based behaviors contribute to evo-
lution. Firstly, our model demonstrated the occurrence of 
evolution. Our results revealed that the digital songbirds 
experienced an increase in body mass, leading to a higher 
probability of survival and reproduction. We deduced that 
the fittest individuals possessed phenotypes that provided 
advantages right from the start of our simulations. The re-
maining population adopted similar phenotypes within a 
mere few generations. Specifically, the most advantageous 
phenotype expressed a moderate level of fear during for-
aging. Secondly, our model demonstrated that multiple 
phenotypes could originate from the same genotype. This 
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finding is particularly intriguing when compared to the 
concept known as “the phenotypic gambit” (Grafen, 1984, 
1991). Although our model, like the gambit and previous 
models, simplifies for the sake of optimization, our find-
ings suggest that proximate mechanisms warrant further 
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value and precision of our simulations.
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