Exploring the Evolution of Ionotropic Glutamate Receptors in Metazoa

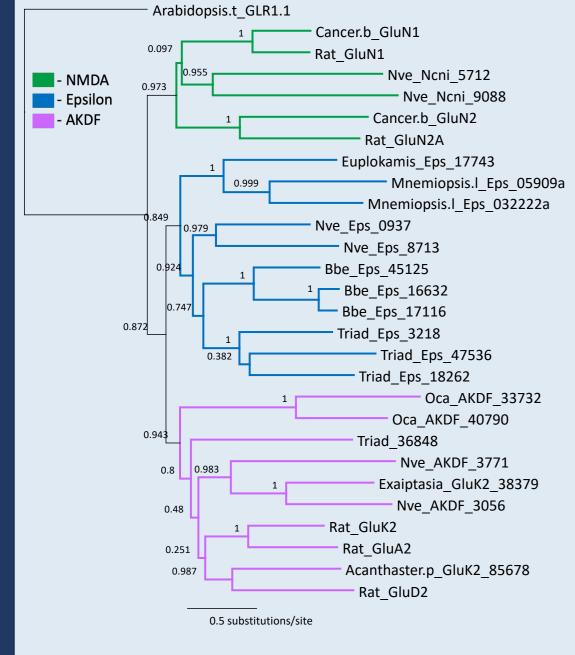
Ingrid Leivestad, Sigurd S. Nøklebye, Yuhong Wang, Timothy Lynagh Michael Sars Centre, University of Bergen, Bergen, Norway

Background

Ionotropic glutamate receptors (iGluRs): ligand-gated ion channels that activate upon binding to excitatory neurotransmitters, predominantly Glutamate.

iGluRs mediate most excitatory neurotransmission in both vertebrates and invertebrates and play an important role in many physiological processes.

Analysis based on sequence similarity and pharmacology proposes a classification of iGluRs into four subfamilies, including AKDF (AMPA, Kainate, Delta and Phi), NMDA, Epsilon and Lambda (1).

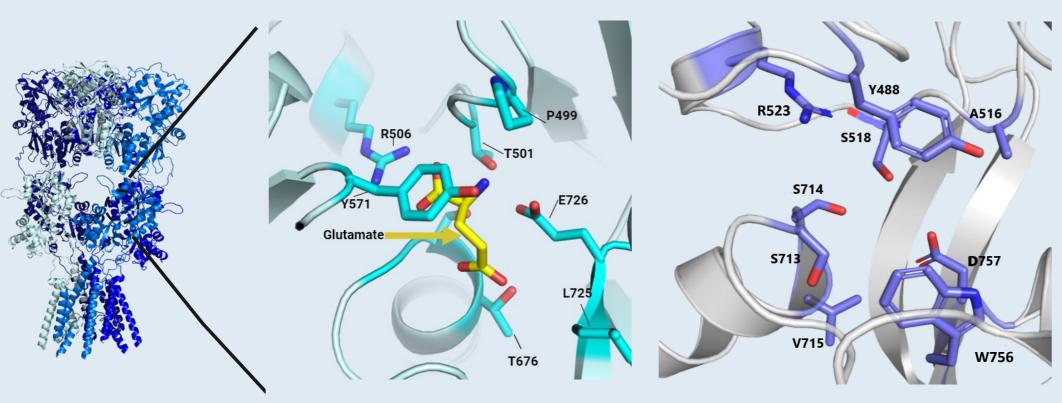

The ligand selectivity and potency of iGluRs is dictated by certain residues lining the agonist binding pocket in iGluR subunits.

Previous structural data suggest that ligand recognition is determined by residues in positions 674, 676, and 725 (nr based on Rat_GluA2), and that residues in positions 499, 501, and 726 influence ligand potency.

Due to lack of functional verification of the structural data, we explored how specific residues within the agonist binding pocket influence the binding efficacy of agonists by using molecular mutagenesis and TEVC recordings.

Evolutionary and structural background of iGluRs

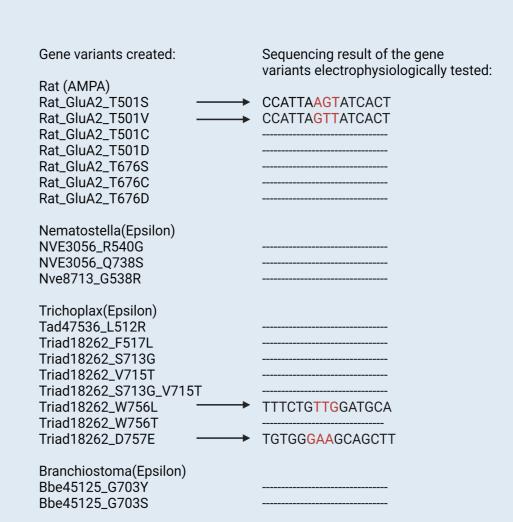
Phylogeny of selected metazoan iGluRs

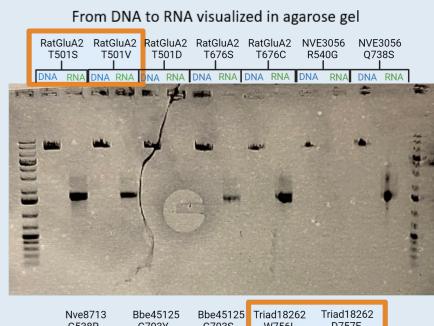


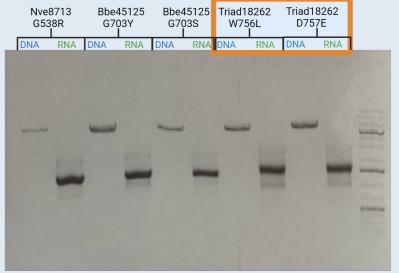
Multiple sequence alignment of iGluR residues involved in in ligand-binding

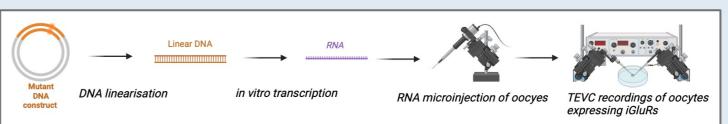
	iGluR genes	Ligand Binding Domain Segments							
	Rat_GluA2	471 ▼	499 506 ▼ ▼	674 V	725 ▼	75			
NMDA	Cancer.b_GluN1	QFG	APLTINPERAQV	ATVKG <mark>SSV</mark> D	IWDS	G			
	Rat_GluN1	KFG	APLTINNERAQY	ATVKQ <mark>SSV</mark> D	IWDS	G			
	Cancer.b_GluN2	FWG	TSIKINSEREEV	ATTLH <mark>GNT</mark> D	LYDA	G			
	Rat_GluN2A	KHG	GSLTINEERSEV	GTVPNGSTE	IYDA	G			
Epsilon	Nve Eps 0937	NFG	TSLTISPERQKV	GTVLNSQPQ	IWDS	G			
	Nve_Eps_8713	QFG	APLTISSEGQTV	GTLMNSQLQ	ISDR	G			
	Bbe_Eps_45125	NFG	ATLTITAQREEA	GARGSGATE	ISDN	G			
	Bbe_Eps_17116	QYG	A <mark>IMS</mark> ITAQRQAD	GAISTYSSW	FTDS	G			
	Triad_Eps_47536	QYG	VPLSITAELQEH	GVLKEGSTN	IADS	G			
	Triad_Eps_18262	SYG	GAFSISVSRAGE	GTVSGSSVH	LWDA	G			
AKDF	Triad_36848	IFG	APLSITSFRQSV	GTVIDSEAM	IWYY	G			
	Exaiptasia_AKDF_38379	A <mark>Y</mark> G	APITIYATRESV	GVLKG <mark>GAI</mark> D	LTEQ	S			
	Nve_AKDF_3056	S <mark>Y</mark> G	G <mark>PIT</mark> ITAE <mark>R</mark> EEV	GVQEG <mark>GSL</mark> F	LTDQ	S			
	Rat_GluK2	KYG	A <mark>PLA</mark> ITYV <mark>R</mark> EKV	GAVEDGATM	LMES	G			
	Rat_GluA2	KYG	A <mark>PLT</mark> ITLV <mark>R</mark> EEV	GTLDS <mark>GST</mark> K	LLES	G			
	Rat GluD2	KYG	SALTITPDRENV	GTVLD <mark>SAV</mark> Y	VWD A	G			

	Rat_GluA2	499 ▼		506 ▼		674 ▼	_	725 V	5	Selectivity
Cancer.b_GluN1		APLT	INPE	RAQV	ATVKG	SSV	D I	WD	S	Glycine
Rat_GluN1		APLT	INNE	RAQY	ATVKQ	SSV	D I	WD	S	Glycine, D-Serine
Cancer.b_GluN2		TSIK	INSE	REEV	ATTLH	GNT	D L	YΓ	Α	Glutamate
Rat_GluN2A		GSLT	INEE	RSEV	GTVPN	GST	E I	YΓ	Α	Glutamate
Nve_Eps_8713		APLT	ISSE	G QTV	GTLMN	SQL	Q I	SD	R	unknown
Bbe_Eps_45125		ATLT	ITAQ	REEA	GARGS	GAT	E I	SD	N	Glutamate
Triad_Eps_47536		V PLS	ITAE	LQEH	GVLKE	GST	N I	ΑC	S	unknown
Triad_Eps_18262		GAFS	ISVS	RAGE	GTVSG	SSV	H L	WD	Α	Glycine, D-Serine
Nve_AKDF_3056		GPIT	ITAE	REEV	GVQEG	GSL	F L	TC	Q	Glutamate, Aspartate
Rat_GluK2		APLA	ITYV	REKV	GAVED	GAT	M L	ME	S	Glutamate
Rat_GluA2		APLT	ITLV	REEV	GTLDS	GST	K L	LE	S	Glutamate
Rat_GluD2		SALT	ITPD	RENV	GTVLD	SAV	Y V	WD	Α	Glycine, D-Serine

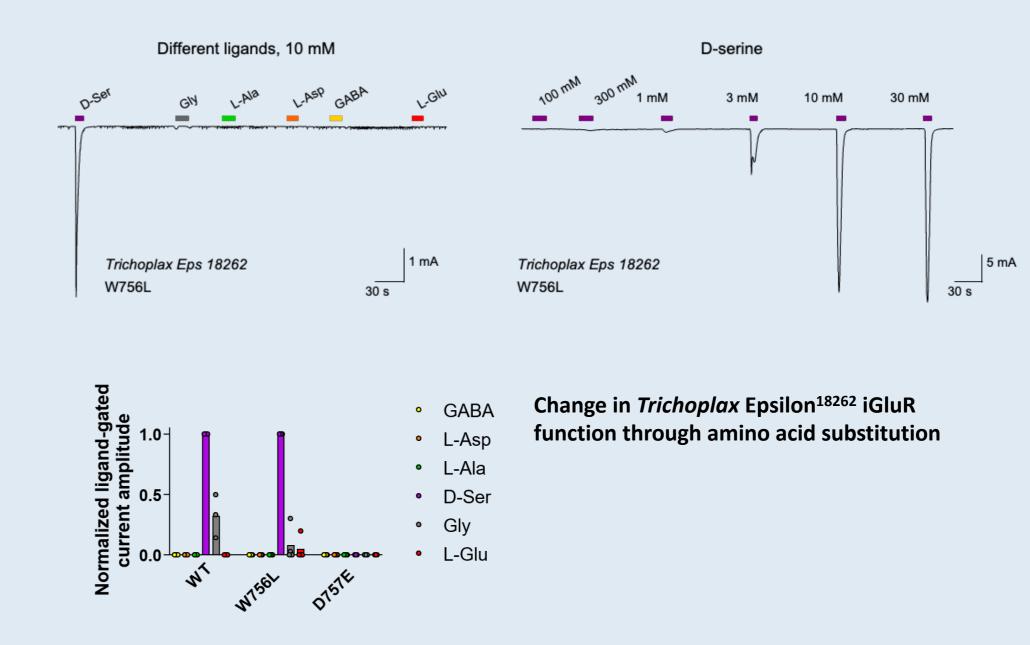

Homology models of iGluR agonist binding pocket

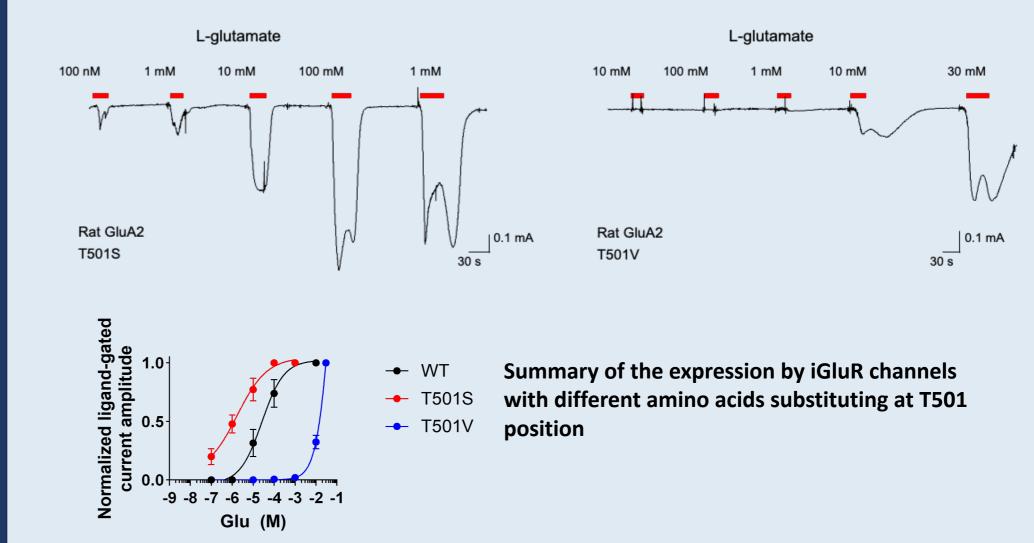



Rat GluA2 agonist binding pocket Rat_GluA2 tetramer (4)


Trichoplax Epsilon¹⁸²⁶² iGluR agonist binding pocket

Experimental approach to simulate evolution of iGluRs





Electrophysiological recordings of Trichoplax and Rat iGluRs expressed in *Xenopus laevis* oocytes

Ligand-gated current responses in oocytes expressing mutant W756L Trichoplax Epsilon¹⁸²⁶² iGluRs

The current response recorded in oocytes expressing mutant T501S and T501V Rat GluA2 AKDF iGluR when exposed to L-glutamate

References:

1. Ramos-Vicente, D., Grant, S. G. N., & Bayés, A.

(2021). Metazoan evolutionand diversity of glutamate receptors and their auxiliary subunits. *Neuropharmacology*, 195, 108640.

2. Ramos-Vicente, D., Ji, J., Gratacòs-Batlle, E., Gou, G., Reig-Viader, R., Luís, J., Burguera, D., Navas-Perez, E., García-Fernández, J., Fuentes-Prior, P., Escriva, H., Roher, N., Soto, D., & Bayés, A. (2018). Metazoan evolution of glutamate receptors reveals unreported phylogenetic groups and divergent lineage-specific events. eLife, 7, e35774.

3. Sandra, S., Oksana, S., Yuhong, W., Hassan, Y. H., & Timothy, L. (2023). Constitutive activity of ionotropic glutamate receptors via a hydrophobic plug in the ligand-binding domain. bioRxiv, 2023.2008.2003.551817.

Conclusion

Due to the increase in T501S iGluR expression and decrease in T501V iGluR expression when compared to the wildtype T501, the results confirm that polar interactions between T501 (or equivalent) and the ligand amine group are important for ligand sensitivity.

Among the more divergent residues in position equivalent to 725 in Rat GluA2, the W/L difference between glycine-binding and glutamate-binding receptors does not seem to determine ligand selectivity, although it may contribute to ligand potency.