BIO299 – Effects of Notch inhibitor on nervous system regeneration in *Nematostella vectensis*

Elias H. Hermansen, Fabian Rentzsch

Why the starlet sea anemone?	What did we learn? (days post ablation)
It can regenerate any part of its body completely. We are	4 days: No significant difference
interested in its ability to regenerate its nervous system after	8 days: No significant difference
it is destroyed.	14 days: Animals subjected to notch inhibitor were
	unhealthy or dead.
Why Notch inhibition?	
Disrupting Notch signaling has shown to influence nervous	Suggesting that a gentler approach of subjecting them to
system development in embryogenesis.	the notch inhibitor for only the initial days of nervous
We were therefore interested in studying its effects on older	system regeneration would be more suitable for further
animals ability to regenerate.	study.

8 Days post ablation, no notch inhibitor

8 days post ablation, with notch inhibitor

Healthy animals

Unhealthy / Dead animals

A method enabling us to destroy the specific cells we want to whenever we want to.

We used a regulatory element (ElaV) almost exclusively active in the nervous cells of *Nematostella*. This was used to control the expression of the two proteins NTR-Cerulean and mOrange. These proteins are therefore only expressed in the nervous cells of the animals.

NTR-Cerulean encodes for a two-part protein:

- 1. Nitro reductase (NTR): this protein triggers programmed cell death when subjected to Nifurpirinol (NFP).
- 2. Cerulean: fluorescent protein to show presence of NTR

mOrange encodes a fluorescent protein used to visualize the nervous stem under fluorescent microscopy.

At 6 weeks old, half the animals were subjected to NFP and the other half kept as control.

Post ablation

These groups were then divided into being subjected or not to the **notch inhibitor LY-411575**. Inhibited and control groups were then **fixated** at **4 and 8 days** post ablation and analyzed using **confocal microscopy**.

UNIVERSITY OF BERGEN Faculty of Science and Technology

Poster number 299_14

DO NOT USE THIS AREA AS IT WILL DISAPPEAR IN THE POSTER CLAMPS