Antarctic Polynyas and their role in **Deep Water Formation**

Coastal and open-ocean polynyas play crucial roles in the formation of deep water by creating cold, dense AABW due to sea-ice production and open-ocean deep convection, respectively. The evolution of polynyas under climate change is uncertain.

Linus A. Gummert Tabea J. Rahm

University of Bergen Linus.Gummert@uib.no Tabea.Rahm@uib.no

Polynyas: Formation and Processes

Open-ocean polynyas

Most prominent example: Weddell Sea polynyas

Coastal polynyas

Formation:

 Katabatic winds advect the adjacent pack ice away from the coast

Figure 3. Extent of the 2017 Weddell Polynya (sea ice concentation, in %, from AMSR2; Swart et al. 2017)

Formation:

- Created by concurrent upper-ocean preconditioning (weakened stratification) and meteorological perturbations (storms)
- Maintained by a rapid ventilation of deep-ocean heat through convective mixing

Role of eddies and topography:

• The interaction between circulation and topography can activate cyclonic eddies at Maud Rise that increase upwelling and transmit divergent Ekman stress to the sea ice cover.

Deep water formation:

• This open-ocean deep convection may have presented a dominant mode of deep water formation in past climates.

Deep water formation:

- The rapid and continuous formation of sea ice produces cold, dense shelf water (due to brine release)
- Once this dense water has gained sufficient negative buoyancy, it can mix down the continental slope with ambient water to produce Antarctic Bottom Water (AABW)
- → Dominant contributor to AABW production

Figure 4. Schematic illustrating how an open-ocean polynya is triggered in the Weddell Sea by both hydrological and dynamical processes (Cheon & Gordon, 2019).

Polynyas and Climate Change

Two competing effects:

• Freshening of the surface waters would increase the

Figure 2. Map of coastal polynyas and landfast sea ice In the Southern Ocean. Frequency of occurrence during the freezing period (Mar-Oct) for the period of 2003-2011 is shown by colour shadings. Land mass is grey, and ice shelves & glacier tongues are *light grey*. (Ohshima et al. 2016)

- stratification, which may inhibit convection and thereby the occurrence of open-ocean polynyas.
- Intensifying Southern Hemisphere westerly winds could increase the upwelling of warm, salty deep water and by that intensify the creation of polynyas.
- \rightarrow Both effects are predicted by the CMIP5 models. \rightarrow The dominating effect remains uncertain.

REFERENCES

Campbell, E. C., Wilson, E. A., Moore, G. K., Riser, S. C., Brayton, C. E., Mazloff, M. R., & Talley, L. D. (2019). Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies. Nature, 570(7761), 319-325. Cheon, W. G., & Gordon, A. L. (2019). Open-ocean polynyas and deep convection in the Southern Ocean. Scientific reports, 9(1), 1-9. Gordon, A. L. (2014). Southern Ocean polynya. *Nature Climate Change*, 4(4), 249-250. Kitade, Y., Shimada, K., Tamura, T., Williams, G. D., Aoki, S., Fukamachi, Y., ... & Ohshima, K. I. (2014). Antarctic bottom water production from the Vincennes Bay polynya, East Antarctica. Geophysical Research Letters, 41(10), 3528-3534. Ohshima, K. I., Fukamachi, Y., Williams, G. D., Nihashi, S., Roquet, F., Kitade, Y., ... & Wakatsuchi, M. (2013). Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nature Geoscience, 6(3), 235-240 Ohshima, K. I., Nihashi, S., & Iwamoto, K. (2016). Global view of sea-ice production in polynyas and its linkage to dense/bottom water formation. Geoscience Letters, 3(1), 1-14.

Swart, S., et al. "Return of the Maud Rise polynya: climate litmus or sea ice anomaly." State of the Climate in (2017).

UNIVERSITY OF BERGEN

