MOL231: CRISPR/Cas9 induced TRP knockouts in Salpingoeca rosetta

Authors: Oline Øie Hovland*, Espen Søvik* and Jeffrey Colgren *Contributed equally Sars International Center for Marine Molecular Biology, University of Bergen, Bergen, Norway

"To understand how animals evolved, we must study choanoflagellates." **Peter Holland**

BACKGROUND

Choanoflagellates are the closest living unicellular relative to animals, and possess many genes previously assumed exclusive to metazoans. They may hold information pertaining to **animal multicellularity**. **Sensory neurons** are crucial for animal's ability to navigate and interact efficiently within their environment. In humans, sensory systems are spearheaded by **transient receptor potential** (TRP) channels. Activation of these calcium ion channels triggers transduction of signal to the central nervous system, inducing **somatosensory experiences**, such as pressure, pain, and temperature sensation. TRP channels are linked to cancer and neurodegenerative disorders. Studying their function in the **Choanoflagellate** could provide information aiding in development of novel treatments for disease, and help understand the evolutionary origin of animal sensory systems.

RESULTS

Bacteria in collar

Growth rate

Swim speed

Left - Immunostaining of TRP C mutant Tubulin - yellow, Actin magenta. Immunostaining of structural proteins. Morphology is unaltered

Bottom - Basic protein domain structure and, sequence alignment of TRP C mutant and wild type

Bottom - Mutant sequence; Homology directed repair induced insertion of

Collar angles

- Discrepancies in collar morphology?

Large bacterial clumps litter the collar.

Discussion

Bright spots in cell body show consumed bacteria.

Hours past seeding

Growth curve

Culture concentration measured over 6 days, twice a day.

$\Delta \text{TRP C}$

Greatly reduced travel distance for mutant.

Future work

- Tagging endogenous TRP A channels to map protein location.
- Calcium imaging to visualize ion flow through the channels.
- Observe feeding during controlled bacterial concentrations.

Tracking of distance travelled during

Wild Type

time interval.

Collar morphology Collar angles were measured for WT and mutant to look for discrepancies.

TRP A - Severely impaired growth rate.

- Difficulty feeding?

TRP C - Impaired swim speed.

Acknowledgements:

- 1. The Burkhardt group for the general assistance.
- 2. Aishwarya Ravi for assistance during FACS sorting.

References:

5 µm

- 1. Himmel, Nathaniel J., Cox, Daniel N.. Transient receptor potential channels: current perspectives on evolution, structure, function and nomenclature. 2020;
- 2. Hoffmeyer, Tarja T., Burkhardt, Pawel. Choanoflagellate models Monosiga brevicollis and Salpingoeca rosetta. 2016;
- 3. Clapham, D. TRP channels as cellular sensors. 2003.

UIB, NORWAY

DO NOT USE THIS AREA AS IT WILL DISAPPEAR IN THE POSTER CLAMP

Wild Type

Choanoflagellates are important models to understand origin of animal sensation.