Hyperthermophiles and Biotechnological Applications of Their Enzymes

Vincent Belde, Olivia S. Matthiesen & Guro Ødegårdstuen

Discover the power of hyperthermophiles: organisms thriving in extreme heat environments, whose enzymes unlock biotechnological applications

HYDROTHERMAL VENTS

Fissures with extremely hot (>100°C) water, rich in minerals, which is discharged into the marine ecosystem.

HYPERTHERMOPHILES

To survive at such high temperatures, hyperthermophilic *Bacteria* and *Archaea* living there are adapted to thrive at high temperatures.

Oregon State University / CC BY-SA 2.0.

SAMPLING & EXTRACTION OF METAGENOME

All microbial DNA present in a sample can be extracted and original genomes reconstructed.

EXTREMOZYMES

One adaptation includes extremozyme production, valuable for biotechnology due to their functionality in extreme environments.

SEQUENCING & BIOINFORMATICS

The assembled genomes are analyzed for genes encoding extremozymes with possible applications.

EXPRESSION, PURIFICATION & ACTIVATION

Physical parameters of the enzyme are determined, and the enzyme gets expressed, purified, up concentrated and measured for activity.

