

Mycelium Decomposition The Effects of Plant Removal Treatments and Climate Gradients

Background

UNIVERSITY

OF BERGEN

With huge amounts of **carbon** being stored by mycelium in the soil, it is important to learn more about what affects this process in the context of **climate change**¹.

Mycelium consists of filamentous hyphae and are the underground part of the fungi fruitbody ^{FRUITBODY} visible above ground². Different species have different melanin concentrations, affecting the rate of decomposition³.

The aim of this project is to find out how the decomposition rate in 2 types of fungi are affected by the composition of plant functional groups present, the amount of precipitation, and temperature. (Figure 1)

Forbs Grass Moss

Functional groups of plants are plant species sharing a similar function in the ecosystem⁴. By systematically removing functional groups we can see if their function has any effect on the decomposition rate of the mycelium.

Project Setup

The first part of the project was done by a team at UiO and included preparing, burying, and then digging up the samples from the field after a few years.

The samples were then handed to me to document the decomposition rate by weighing the samples post-decomposition and comparing to the weight pre-decomposition to estimate **weight loss**. (Figure 2)

References

- 1. Hawkins, H. J., Cargill, R. I., Van Nuland, M. E., Hagen, S. C., Field, K. J., Sheldrake, M., ... & Kiers, E. T. (2023). Mycorrhizal mycelium as a global carbon pool. Current Biology, 33(11), R560-R573. https://doi.org/10.1016/j.
- 2. Falandysz, J., Fernandes, A. R., Meloni, D. (2022). An overview of the lithium content and lithiation of the cultivable macrofungal species, Agaricus bisporus and Pleurotus spp. Trends in Food Science & Technology, 119, 338-347. https://doi.org/10.1016/j.tifs.2021.12.014 Fernandez, C. W., Heckman, K., Kolka, R., Kennedy, P. G. (2019). Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Ecology letters, 22(3), 498-505. https://doi.org/10.1111/ele.13209
- Díaz, S., & Cabido, M. (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in ecology & evolution, 16(11), 646-655.

5. Althuizen, I.H.J., Lee, H., Sarneel, J.M., Vandvik, V. (2018). Long-Term Climate Regime Modulates the Impact of Short-Term Climate Variability on Decomposition in Alpine Grassland Soils. Ecosystems 21, 1580–1592. https://doi.org/10.1007/s10021-018-0241-5

Mari Andresen Mosdal

THE FIORDS